QuantiPlate™ Kit for Microcystin

Highlights:
- Quantitative laboratory detection of Microcystin toxin in surface water
- Detects from 0.16 to 2.5 ppb
- High Sensitivity Option for potable water samples (see Appendix) detects from 0.05 to 0.83 ppb

Contents of Kit:
- 12 strips of 8 antibody-coated wells each, in plate frame
- 1 vial of Negative Control
- 1 vial of 0.16 ppb Microcystin LR Calibrator
- 1 vial of 0.6 ppb Microcystin LR Calibrator
- 1 vial of 2.5 ppb Microcystin LR Calibrator
- 1 bottle of Assay Diluent
- 1 bottle of Microcystin-enzyme Conjugate
- 1 packet of Wash Solution salts
- 1 bottle of Substrate
- 1 bottle of Stop Solution

Catalog Number EP 022

Intended Use
The EnviroLogix QuantiPlate Kit for Microcystins is designed for the quantitative laboratory detection of Microcystin toxin in surface water samples, with an assay quantitation range from 0.16 to 2.5 parts per billion (ppb). (See the Appendix at the end of this package insert describing an alternate assay protocol, suitable for use with colorless and/or potable water samples, with a quantitation range from 0.05 to 0.83 ppb.)

How the Test Works
This QuantiPlate Kit for Microcystins is a competitive Enzyme-Linked ImmunoSorbent Assay (ELISA).

In the test, Microcystin toxin in the sample competes with enzyme (horseradish peroxidase)-labeled Microcystin for a limited number of antibody binding sites on the inside surface of the test wells.

After a simple wash step, the outcome of the competition is visualized with a color development step. As with all competitive immunoassays, sample concentration is inversely proportional to color development.

Darker color = Lower concentration
Lighter color = Higher concentration

Limit of Detection
The Limit of Detection (LOD) of this Kit is 0.147 ppb. The LOD was determined by interpolation at 81.3% B0* from a standard curve. 81.3% B0 was determined to be 3 standard deviations from the mean of a population of negative water samples.

*100% B0 equals the maximum amount of Microcystin-enzyme conjugate that is bound by the antibody in the absence of any Microcystin in the sample (i.e. negative control). \%B0 = (OD of Sample or Calibrator/OD of Negative Control) x 100.

Limit of Quantification
The Limit of Quantification (LOQ) of this Kit was validated at 0.175 ppb (quantification between the 0.160 ppb lowest calibrator and 0.175 ppb may be reliable, but has not been validated). The LOQ was determined by fortifying a population of negative water samples at 0.175 ppb. The mean recovery was 108% with a coefficient of variation (CV) [(standard deviation/mean) x 100] of 13.6%.

Precision
Microcystin-fortified control solutions were repetitively analyzed both within a single assay, and in different assays on different days. The data is expressed as %CV for both the recovered concentration and for absorbance (OD).

Fortification and Recovery
Six surface water samples were fortified with Microcystin to a concentration of 1.0 ppb. The average recovery was 111%, with a CV of 3.6%.
Cross-Reactivity

This Kit does not distinguish between the Microcystin toxin variants, but detects their presence to differing degrees. The accompanying table shows the value for 50% B₀ and the value for the 81.3% B₀ limit of detection for four Microcystin toxin variants and nodularin toxin. Concentration is in ppb. Humic acid did not interfere in the assay up to a concentration of 100 ppm.

Materials Needed

- disposable tip adjustable air-displacement pipette which will measure 20 μL, 100 μL and 125 μL
- marking pen (indelible)
- tape or Parafilm®
- timer (30 minutes)
- distilled water for preparing Wash Solution
- glassware for storing Wash Solution
- wash bottle for washing strips with Wash Solution
- microtiter plate reader or strip reader
- microtiter plate washer (optional)
- twelve-channel pipette that will measure 20 μL, 100 μL and 125 μL (optional)
- racked dilution tubes for loading samples into the plate with a 12-channel pipette (optional)
- orbital plate shaker (optional)

Preparation of Solutions

Wash Buffer:
To make 1 L, add the contents of one packet of phosphate-buffered saline - Tween 20, pH 7.4 (Wash Solution salts) to 1 L of distilled water. Mix thoroughly to dissolve the salts. This can be stored at room temperature.

How to Run the Assay

- Read all of these instructions before running the kit.
- Allow all reagents to reach room temperature before beginning (at least 30 minutes with un-boxed strips and reagents at room temperature - do not remove strips from bag with desiccant until they have warmed up).
- Organize all samples, reagents and pipettes so that steps 1 and 2 can be performed in 10 minutes or less.
- If more than three strips are to be run at one time, the 10 minutes is likely to be exceeded, and the use of a multi-channel pipette is recommended (see “Note” below).
- If three or fewer strips are to be run, use a disposable-tip air-displacement pipette and a clean pipette tip to add each Calibrator and sample to the wells. Assay Diluent, Conjugate, Substrate, and Stop Solution may be added in the same manner; alternatively, use a repeating pipette with a disposable tip on the end of the Combitip for these three reagents.
- If fewer than all twelve strips are used, reseal the unneeded strips and the desiccant in the plastic bag provided.
- Use the well identification markings on the plate frame to guide you when adding the samples and reagents. Two strips may be used to run the Negative Control (NC), three Calibrators (C1-C3) and four samples, in duplicate. More samples require more strips. For an example plate layout see Figure 1.
1. Rapidly add 125 µL of Microcystin Assay Diluent to each well that will be used, preferably with a repeating or multi-channel pipetter.

2. Immediately add 20 µL of Negative Control (NC), 20 µL of each Calibrator (C1-C3) and 20 µL of each sample (S1-S8) to their respective wells, as shown at left. (Follow this same order of addition for all reagents.) **Do not add Microcystin-enzyme Conjugate in this step.**

3. Thoroughly mix the contents of the wells by moving the strip holder in a rapid circular motion on the benchtop for a full 20-30 seconds. Be careful not to spill the contents!

NOTE: In order to minimize setup time it is recommended that a multi-channel pipette be used in steps 1, 2, 5, 8 and 10 when more than 3 strips are used.

4. Cover the wells with tape or Parafilm to prevent evaporation and incubate at ambient temperature for 30 minutes. If an orbital shaker is available shake at 200 rpm.

5. Add 100 µL of Microcystin-enzyme Conjugate to each well. Do not empty the well contents or wash the strips at this time.

6. Thoroughly mix the contents of the wells as in step 3. Cover the wells with tape or Parafilm and incubate at ambient temperature for 30 minutes. Use orbital shaker if available.

7. After incubation, carefully remove the covering and vigorously shake the contents of the wells into a sink or other suitable container. Flood the wells completely with Wash Solution, then shake to empty. Repeat this wash step four times. Slap the plate on a paper towel to remove as much Wash Solution as possible. Alternatively, use a microtiter plate washer with Wash Solution for the wash step.

8. Add 100 µL of Substrate to each well.

9. Thoroughly mix the contents of the wells, as in step 3. Cover the wells with new tape or Parafilm and incubate for 30 minutes at ambient temperature. Use orbital shaker if available.

Caution: Stop Solution is 1.0 N Hydrochloric acid. Handle carefully.

10. Add 100 µL of Stop Solution to each well and mix thoroughly. This will turn the well contents yellow.

NOTE: Read the plate within 30 minutes of the addition of Stop Solution.

How to Interpret the Results

Spectrophotometric Measurement

1. Set the wavelength of your microtiter plate reader to 450 nanometers (nm). (If it has dual wavelength capability, use 600, 630 or 650 nm as the reference wavelength.)

2. If the plate reader does not auto-zero on air, zero the instrument against 200 µL water in a blank well. Measure and record the optical density (OD) of each well’s contents. Alternatively, measure and record the OD in every well, then subtract the OD of the water blank from each of the readings.

3. A semi-log curve fit should be used for the standard curve if the microtiter plate reader you are using has data reduction capabilities. If not, calculate the results manually as described in the next section.
How to Calculate the Quantitative Results

1. After reading the wells, average the OD of each set of calibrators and samples, and calculate the %B₀ as follows:

 \[\%B₀ = \frac{\text{average OD of Calibrator or sample}}{\text{average OD of Negative Control}} \times 100 \]

 The %B₀ calculation is used to equalize different runs of an assay. While the raw OD values of Negative Controls, Calibrators, and samples may differ from run to run, the %B₀ relationship of calibrators and samples to the Negative Control should remain fairly constant.

 The CV for each pair of Calibrator and sample OD values should not exceed 15%.

2. Graph the %B₀ of each Calibrator against its Microcystin concentration on a semi-log scale (see Illustrative Standard Curve, left).

3. Determine the Microcystin concentration of each sample by finding its %B₀ value and the corresponding concentration level on the graph.

4. Interpolation of sample concentration is only possible if the %B₀ of the sample falls within the range of %B₀’s of the Calibrators.

 If the %B₀ of a sample is higher than that of the lowest Calibrator, the sample must be reported as less than 0.16 ppb.

 If the %B₀ of a sample is lower than that of the highest Calibrator, the sample must be reported as greater than 2.5 ppb. If a concentration must be determined for these high level samples, dilute the sample 1:8 in distilled water. Run this dilution in a repeat of the immunoassay. If the result now falls within the range of %B₀’s of the Calibrators, you must then multiply the concentration measured in the diluted sample by a factor of 8.

Figure 1a. Example of a typical plate setup. (1 x 8 strips)

<table>
<thead>
<tr>
<th>Well</th>
<th>Contents</th>
<th>OD</th>
<th>Average OD</th>
<th>%CV</th>
<th>%B₀</th>
<th>Microcystin Concentration (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NC</td>
<td>1.398</td>
<td>1.347</td>
<td>2.628</td>
<td>100</td>
<td>NA</td>
</tr>
<tr>
<td>B</td>
<td>C1</td>
<td>1.184</td>
<td>1.177</td>
<td>0.419</td>
<td>86</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>C2</td>
<td>0.773</td>
<td>0.776</td>
<td>0.274</td>
<td>56.4</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>C3</td>
<td>0.246</td>
<td>0.250</td>
<td>1.14</td>
<td>18.1</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>S1</td>
<td>0.573</td>
<td>0.567</td>
<td>0.744</td>
<td>41.5</td>
<td>1.01</td>
</tr>
</tbody>
</table>

*Actual values may vary; this data is for demonstration purposes only.
LIMITED WARRANTY

EnviroLogix Inc. ("EnviroLogix") warrants the products sold hereunder ("the Products") against defects in materials and workmanship when used in accordance with the applicable instructions for a period not to extend beyond a product’s printed expiration date. If the Products do not conform to this Limited Warranty and the customer notifies EnviroLogix in writing of such defects during the warranty period, including an offer by the customer to return the Products to EnviroLogix for evaluation, EnviroLogix will repair or replace, at its option, any product or part thereof that proves defective in materials or workmanship within the warranty period.

ENVIROLOGIX MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. The warranty provided herein and the data, specifications and descriptions of EnviroLogix products appearing in EnviroLogix published catalogues and product literature are EnviroLogix’ sole representations concerning the Products and warranty. No other statements or representations, written or oral, by EnviroLogix’ employees, agents or representatives, except written statements signed by a duly authorized officer of EnviroLogix Inc., are authorized; they should not be relied upon by the customer and are not a part of the contract of sale or of this warranty.

EnviroLogix does not warrant against damages or defects arising in shipping or handling, or out of accident or improper or abnormal use of the Products; against defects in products or components not manufactured by EnviroLogix, or against damages resulting from such non-EnviroLogix made products or components. EnviroLogix passes on to customer the warranty it received (if any) from the maker thereof of such non-EnviroLogix made products or components. This warranty also does not apply to Products to which changes or modifications have been made or attempted by persons other than pursuant to written authorization by EnviroLogix.

THIS WARRANTY IS EXCLUSIVE. The sole and exclusive obligation of EnviroLogix shall be to repair or replace the defective Products in the manner and for the period provided above. EnviroLogix shall not have any other obligation with respect to the Products or any part thereof, whether based on contract, tort, strict liability or otherwise. Under no circumstances, whether based on this Limited Warranty or otherwise, shall EnviroLogix be liable for incidental, special, or consequential damages.

This Limited Warranty states the entire obligation of EnviroLogix with respect to the Products. If any part of this Limited Warranty is determined to be void or illegal, the remainder shall remain in full force and effect.

Parafilm is a registered trademark of American Can Corporation
EnviroLogix, the EnviroLogix logo, and QuantiPlate are trademarks of EnviroLogix Inc.

© EnviroLogix 2015
HIGH SENSITIVITY PROTOCOL

Limit of Detection

The Limit of Detection (LOD) of the High Sensitivity Protocol for this Kit is 0.03 ppb. The LOD was determined by interpolation at 90.9% B_0 from a standard curve. 90.9% B_0 was determined to be 3 standard deviations from the mean of a population of negative water samples.

Limit of Quantification

The Limit of Quantification (LOQ) of this Kit’s High Sensitivity Protocol was validated at 0.06 ppb (quantification between the 0.05 ppb lowest calibrator and 0.06 ppb may be reliable, but has not been validated). The LOQ was determined by fortifying a population of negative water samples at 0.06 ppb. The mean recovery was 88% with a coefficient of variation (CV) [(standard deviation/mean) x 100] of 9.3%.

APPENDIX

Instructions for Assay Protocol with Increased Sensitivity

The following assay protocol will produce an assay with calibrator values of 0.05, 0.20 and 0.83 ppb. This protocol is suitable only for colorless and/or potable water samples; surface waters containing visible organic matter will likely cause interference in the assay.

NOTE: All of the precautions and notes discussed under HOW TO RUN THE KIT apply to this assay format.

In addition to the items listed above, these additional items will be needed for this assay protocol:

- disposable tip adjustable air-displacement pipette which will measure 50 and 200 μL
- glass test tubes in which to dilute the calibrators

Dilution of Calibrators

Dilute the Negative Control and the 3 Calibrators 1:3 in distilled water by adding 100 μL of calibrators supplied with this kit to 200 μL of distilled water. Label these dilutions Negative Control, 0.05, 0.20 and 0.83 ppb. Mix thoroughly.

Assay Protocol

1. Rapidly add 50 μL of Microcystin Assay Diluent to each well that will be used, preferably with a repeating or multi-channel pipetter.

2. Immediately add 50 μL of Negative Control (NC), 50 μL of each diluted Calibrator (C1-C3) and 50 μL of each sample (S1-S8) to their respective wells, as shown in Figure 1. (Follow this same order of addition for all reagents.) **Do not add Microcystin-enzyme Conjugate in this step.**

3. Thoroughly mix the contents of the wells by moving the strip holder in a rapid circular motion on the benchtop for a full 20-30 seconds. Be careful not to spill the contents!

NOTE: In order to minimize setup time it is recommended that a multi-channel pipette be used in steps 1, 2, 5, 8 and 10 when more than 3 strips are used.

4. Cover the wells with tape or Parafilm to prevent evaporation and incubate at ambient temperature for 30 minutes. If an orbital shaker is available shake at 200 rpm.

5. Carefully remove tape or Parafilm and then add 100 μL of Microcystin-enzyme Conjugate to each well. Do not empty the well contents or wash the strips at this time.
6. Thoroughly mix the contents of the wells as in step 3. Cover the wells with tape or Parafilm and incubate at ambient temperature for 30 minutes. Use orbital shaker if available.

7. After incubation, carefully remove the covering and vigorously shake the contents of the wells into a sink or other suitable container. Flood the wells completely with Wash Solution, then shake to empty. Repeat this wash step four times. Slap the plate on a paper towel to remove as much Wash Solution as possible. Alternatively, use a microtiter plate washer with Wash Solution for the wash step.

8. Add 100 μL of Substrate to each well.

9. Thoroughly mix the contents of the wells, as in step 3. Cover the wells with new tape or Parafilm and incubate for 30 minutes at ambient temperature. Use orbital shaker if available.

Caution: Stop Solution is 1.0 N Hydrochloric acid. Handle carefully.

10. Add 100 μL of Stop Solution to each well and mix thoroughly. This will turn the well contents yellow.

NOTE: Read the plate within 30 minutes of the addition of Stop Solution.

Assignment of Calibrator Values

In this assay format, assign the low, middle and high calibrators microcystin concentrations of 0.05 ppb, 0.2 ppb and 0.83 ppb, respectively.

For Interpretation and Calculation of Results see the sections on How to Interpret the Results and How to Calculate the Results above. The information contained in those sections is applicable to this more sensitive assay format, with the exception that the calibrator values are different.
13.1 Persistence and degradability: No data available.
13.2 Bioaccumulative potential: No data available.
13.3 Mobility in soil: No data available.
13.4 Results of the PBT and vPvB assessment: Not assessed as a chemical safety assessment, not importation conducted.
13.5 Other adverse effects: No data available.

13.6. Dermal considerations

13.6.1. Contact: Contact a licensed professional and dispose of the material.
13.6.2. Ingestion: Not relevant to the environment.

13.7. Transport Information

14.1. UN Number: 1802
14.2. Transport hazard classes: 8
14.3. Proper shipping name: HYDROCHLORIC ACID SOLUTION
14.4. Packing group: II

15. Environmental Hazards

15.1. Toxicity to aquatic organisms: Not hazardous to the environment.
15.2. Special precautions for user: None.

15.3. Information on Safe Handling and Storage:

16. Disposal Considerations

17. Regulations/Regulatory Information

17.1. US Federal, State and International Regulations/Regulatory Information specific for this product or product group:

17.1.1. US Regulations

17.1.1.1. Toxic Substances Control Act (TSCA)

17.1.1.1.1. CAS Number: 7664-39-3

17.1.1.2. Federal Insecticide, Rodenticide, and Fungicide Act (FIRFA)

17.1.1.2.1. TSCA Inventory Information

17.1.1.3. Federal Food, Drug, and Cosmetic Act (FDCA)

17.1.1.3.1. TSCA Inventory Information

17.1.1.4. Food Drug Act (FDCA)

17.1.1.4.1. TSCA Inventory Information

17.1.1.5. Federal Insecticide, Rodenticide, and Fungicide Act (FIRFA)

17.1.1.5.1. TSCA Inventory Information

17.1.1.6. Environmental Protection Agency (EPA)

17.1.1.6.1. TSCA Inventory Information

17.1.1.7. Other Federal Regulations

17.1.1.7.1. TSCA Inventory Information

17.1.1.8. International Regulations

17.1.1.8.1. TSCA Inventory Information

17.1.2. Canadian Regulations/Regulatory Information

17.1.2.1. Canadian Classification and Labelling Act

17.1.2.1.1. Classification and Labelling Information

17.1.2.1.2. Canadian Hazard Classification

17.1.2.2. Canadian Commodity Classification

17.1.2.2.1. Commodity Classification Information

17.1.2.3. Canadian Ingredient Disclosure List

17.1.2.3.1. Ingredient Disclosure Information